Catalyze Innovation that Advances Health

Signaling Sepsis: Developing a Framework to Optimize Alert Design

PIRO text display

 

Summary

The team is informing the development of real-time clinical decision support tools to detect and treat sepsis.


Team

MedStar Health National Center for Human Factors in Healthcare


Background

Sepsis is a spectrum of organ dysfunction that occurs when the body responds to infection. With more than a million people in the United States affected each year, sepsis cases account for billions of dollars in hospital costs. Despite an increasing number of casesa quarter of which result in deathawareness of sepsis is low and many septic patients are not diagnosed at an early stage when aggressive treatment is most effective.

Currently, there are multiple scoring systems to quantify sepsis severity and the probability of various outcomes (e.g., mortality). Complex scoring systems that integrate organ failure assessment scores and general severity scores, which can be critical to sepsis detection and treatment, demonstrate opportunities to support clinical decision-making. However, these scoring systems are not generally incorporated into the electronic health record (EHR) which traditionally deploys binary diagnostic tools. In the absence of integrated alerts, clinicians have to "hunt and gather" in the EHR to identify sepsis and its progression by looking for related clues in the patient’s medical history, vital signs, and clinical lab values.

Given the current landscape, existing alerts have not been widely evaluated and assessed, leading to little consensus on how sepsis-related warnings should be generated and displayed to clinicians. In turn, time pressure, competing demands, and ambiguous alert design reduce clinicians’ opportunity to detect the signs of sepsis. Clinicians need improved EHR alerts as clinical decision support (CDS) tools at the point of care, affording rapid and accurate analysis and tailored treatment solutions in order to combat high mortality rates.

Idea

In 2016, MedStar Health National Center for Human Factors in Healthcare researchers, in partnership with the MedStar Health Research Institute, were awarded a prestigious, four-year Research Project Grant (R01) from the National Institutes of Health to develop a framework to optimize sepsis alert design. 

The research focuses on developing and testing multiple enhanced visual display models that integrate patient data into validated sepsis staging scores. The ultimate goal of the research is to inform the development of future real-time CDS tools that optimize the organization, management, presentation, and utilization of information. Priorities therein include differentiating alerts, reducing alert fatigue, bridging the gap between novice and expert thinking, and creating a universal standard for sepsis alert design.

Impact

The study has resulted in the development of four sepsis alert designs (text and figure displays) based on two sepsis staging models: quick Sepsis-Related Organ Failure Assessment (qSOFA) and Predisposition, Infection, Response, Organ Failure (PIRO).

Using a simulated EHR environment, nurses and physicians were asked to examine test patient records, review a provided alert, and evaluate clinical information. Outcomes reported included objective and subjective measures of preference and performance. Using eye-tracking software and interview methods, the study assessed the impact on provider action and performance by varying: (1) how clinical information is displayed (e.g., text, figure display), (2) the amount of content provided in the alert, and (3) the sepsis severity (e.g., low, high) of the test patient records.

The study also utilized the ShadowBox Process, which allows novices to “see the world through the eyes of the experts” without the experts being present. The results of the study will help identify gaps in novice understanding, aid in the evolution of novice to expert thinking, and identify potential improvements in the clinical decision-making process.

The ultimate goal of this research is to develop an evidence-based framework to optimize clinical decision support in the EHR. As demands on healthcare providers increase, the potential for safety-critical interaction problems with the EHR also increases. The results of our research will enable design changes in the EHR to improve the usefulness of sepsis alerts and reduce unintended consequences associated with current alert management.

Images

Note: Click images to enlarge them.

Experimental design: Study aspects varied
Text display: PIRO
Text display: qSOFA
Figure display: PIRO
Figure display: qSOFA

Resources

Websites

News

Publications

Key Publication:

Additional Publications:


Note: The patient information (name, time of admission, age, sex, etc.) presented in the alert examples on this page is fictitious.